Sabtu, 26 Maret 2016

Jenis dan Fungsi Trafo ( Transformator )

Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energy listrik satu atau lebih rangkaian listrik satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu gendeng magnet berdasarkan prinsip induksi-elektromagnet. Transformator adalah alat yang digunakan untuk mengubah tegangan bolak balik (ac) dari suatu nilai tertentu ke nilai yang kita inginkan terdiri dari kumparan primer dan sekunder.


Gambar 1. Transformator

Perkembangan dan penerapan system transformator pada perumahan, perkantoran maupun pada kendaran yaitu mobil dewasa ini mengalami peningkatan yang pesat. Buktinya adalah banyak industry, perkantoran maupun kendaran dilengkapi dengan penggunaan transformator yang bertujuan untuk mengetahui informasi dan dapat menambah pengetahuan.
System pesawat telepon yang paling sederhana memiliki komponen utama yaitu ISDN EXCHANGE, ISDN PRA, ISDN BRA, ISDN PHONE, ISDN PBX dan ISDN DATA TERMINAL.

II. Jenis-jenis Transformator

Berkaitan dengan topic yang dikaji yakni kegunaan transformator adalah alat untuk mengubah tegangan arus bolak balik menjadi lebih tinggi atau rendah. Transformator terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik dan dililitkan pada inti besi lunak. Inti besi lunak dibuat dari pelat yang berlapis-lapis untuk mengurangi daya yang hilang karena arus pusar. Kumparan primer dan sekunder dililitkan pada kaki inti besi yang terpisah. Bagian fluks magnetic bocor tampak bahwa pada pasangan kumparan terdapat fluks magnetic bocor disisi primer dan sekunder. Secara lebih lengkap bisa dicermati pada gambar 2.


Gambar 2. Bagan fluks magnetic bocor pada pasangan kumparan

Hasil diatas untuk mengurangi fluks magnet bocor pada pasangan kumparan digunakan pasangan kumparan seperti gambar diatas. Kumparan sekunder dililitkan pada kaki inti besi yang sama (kaki yang tengah), dengan lilitan kumparan sekunder terletak diatas lilitan kumparan primer, ditunjukkan pada fluks magnet bocornya, maka dapat dicermati pada gambar dibawah ini.


Gambar 3. Hubungan primer dan sekunder

Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah[2]:
δΦ = Є x δt (1)
Dan untuk rumus GGL induksi yang terjadi dililitan sekunder adalah
Є = N δΦ/δt (2)
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka
δΦ/δt = Vp/Np = Vs/Ns (3)
Dimana dengan menyusun ulang persamaan akan didapat
Vp/Np = Vs/Ns (4)
Sedemikian sehingga
Vp.Ip = Vs.Is (5)

Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.

Jenis-jenis transformator adalah [3]:

1. Step-Up


Gambar 4. Lambang transformator step-up

Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.

2. Step-down


Gambar 5. Skema transformator step-down

Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.

3. Autotransformator


Gambar 6. Skema transformator

Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder. Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).

4. Autotransformator Variabel


Gambar 7. Skema Autotransformator Variabel

Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.

5. Transformator Isolasi

Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling kapasitor.

6. Transformator Pulsa

Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.

7. Transformator Tiga Fasa

Transformator tiga fasa sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta (Δ).


III. Prinsip Kerja Transformator
Komponen Transformator (trafo)
Transformator (trafo) adalah alat yang digunakan untuk menaikkan atau menurunkan tegangan bolak-balik (AC). Transformator terdiri dari 3 komponen pokok yaitu: kumparan pertama (primer) yang bertindak sebagai input, kumparan kedua (skunder) yang bertindak sebagai output, dan inti besi yang berfungsi untuk memperkuat medan magnet yang dihasilkan.[4]


Gambar 8. Bagian-Bagian Transformator


Gambar 9. Lambang Transformator

Prinsip kerja dari sebuah transformator adalah sebagai berikut. Ketika Kumparan primer dihubungkan dengan sumber tegangan bolak-balik, perubahan arus listrik pada kumparan primer menimbulkan medan magnet yang berubah. Medan magnet yang berubah diperkuat oleh adanya inti besi dan dihantarkan inti besi ke kumparan sekunder, sehingga pada ujung-ujung kumparan sekunder akan timbul ggl induksi. Efek ini dinamakan induktansi timbal-balik (mutual inductance).[5]


Gambar 10. Skema transformator kumparan primer dan kumparan sekunder terhadap medan magnet

Pada skema transformator diatas, ketika arus listrik dari sumber tegangan yang mengalir pada kumparan primer berbalik arah (berubah polaritasnya) medan magnet yang dihasilkan akan berubah arah sehingga arus listrik yang dihasilkan pada kumparan sekunder akan berubah polaritasnya.


Gambar 11. Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder

Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder, dapat dinyatakan dalam persamaan[6]:

Vp/Vs = Np/Ns (6)

Vp = tegangan primer (volt)
Vs = tegangan sekunder (volt)
Np = jumlah lilitan primer
Ns = jumlah lilitan sekunder

Simbol Transformator
Berdasarkan perbandingan antara jumlah lilitan primer dan jumlah lilitan skunder transformator ada dua jenis yaitu[7]:
1. Transformator step up yaitu transformator yang mengubah tegangan bolak-balik rendah menjadi tinggi, transformator ini mempunyai jumlah lilitan kumparan sekunder lebih banyak daripada jumlah lilitan primer (Ns > Np).
2. Transformator step down yaitu transformator yang mengubah tegangan bolak-balik tinggi menjadi rendah, transformator ini mempunyai jumlah lilitan kumparan primer lebih banyak daripada jumlah lilitan sekunder (Np > Ns).
Pada transformator (trafo) besarnya tegangan yang dikeluarkan oleh kumparan sekunder adalah:
1. Sebanding dengan banyaknya lilitan sekunder (Vs ~ Ns).
2. Sebanding dengan besarnya tegangan primer ( VS ~ VP).
3. Berbanding terbalik dengan banyaknya lilitan primer,

Vs ~ 1/Np (7)

Sehingga dapat dituliskan:

Vs = Ns/Np x Vp (8)


Penggunaan transformator

Transformator (trafo) digunakan pada peralatan listrik terutama yang memerlukan perubahan atau penyesuaian besarnya tegangan bolak-balik. Misal radio memerlukan tegangan 12 volt padahal listrik dari PLN 220 volt, maka diperlukan transformator untuk mengubah tegangan listrik bolak-balik 220 volt menjadi tegangan listrik bolak-balik 12 volt. Contoh alat listrik yang memerlukan transformator adalah: TV, komputer, mesin foto kopi, gardu listrik dan sebagainya.
Jenis - jenis dan Fungsi dari Dioda

Ada berbagai jenis dioda yang dibuat sesuai dengan fungsinya tanpa meninggalkan karakteristik serta spesifikasinya, seperti dioda penyearah (rectifier), dioda Emisi Cahaya (LED), dioda Zenner, dioda photo (Photo-Dioda) dan Dioda Varactor.  

1. DIODA PENYEARAH (RECTIFIER)
Dioda penyearah adalah jenis dioda yang terbuat dari bahan Silikon yang berfungsi sebagai penyearah tegangan / arus dari arus bolak-balik (ac) ke arus searah (dc) atau mengubah arus ac menjadi dc. Secara umum dioda ini disimbolnya.

 
Kaki-kaki dioda yaitu kaki katoda ditandai dengan garis pada ujungnya
Gambar 1. dioda penyearah
2. DIODA ZENER 
Dioda Zener merupakan dioda junction P dan N yang terbuat dari bahan dasar silikon. Dioda ini dikenal juga sebagai Voltage Regulation Diode yang bekerja pada daerah reverse (kuadran III). Potensial dioda zener berkisar mulai 2,4 sampai 200 volt dengan disipasi daya dari ¼ hingga 50 watt.
Fenomena tegangan breakdown dioda ini menginspirasi pembuatan komponen elektronika kerabat dioda yang bernama Zener. Tidak ada perbedaan struktur dasar dari Zener dengan dioda. Dengan memberi jumlah doping yang lebih banyak pada sambungan P dan N, ternyata tegangan breakdown dioda bisa makin cepat tercapai. Jika pada dioda biasanya baru terjadi breakdown pada tegangan ratusan volt, pada Zener bisa terjadi pada angka puluhan dan satuan volt. Di datasheet ada Zener yang memiliki tegangan Vz sebesar 2 volt, 5.6 volt dan sebagainya. Fungsi dari komponen ini biasanya dipakai untuk pengamanan rangkaian setelah tegangan Zener.


Gambar 2. dioda zener
Perhatikan rangkaian berikut, input tegangan akan yang masuk ke rangkaian lain dan beban akan dibatasi oleh dioda zener. Jika input tegangan dibawah 5.6V, dioda tidak menghantarkan arus sehingga arus akan mengalir ke rangkaian lain dan beban. Jika input tegangan mencapai 5,6 V atau lebih maka dioda zener akan terjadi brekadown dan arus akan mengalir melalui dioda, bukan ke rangkaian atau beban.
3. DIODA EMISI CAHAYA ( LIGHT EMITTING DIODE ) 
Dioda emisi cahaya atau dikenal dengan singkatan LED merupakan Solid State Lamp yang merupakan piranti elektronik gabungan antara elektronik dengan optik, sehingga dikategorikan pada keluarga “Optoelectronic”. Sedangkan elektroda-elektrodanya sama seperti dioda lainnya, yaitu anoda (+) dan Katoda (-). Ada tiga kategori umum penggunaan LED, yaitu :
- Sebagai lampu indikator,
- Untuk transmisi sinyal cahaya yang dimodulasikan dalam suatu jarak tertentu,
- Sebagai penggandeng rangkaian elektronik yang terisolir secara total. Simbol,
  bangun fisiknya dan konstruksinya diperlihatkan pada gambar berikut.
Bahan dasar yang digunakan dalam pembuatan LED adalah bahan Galium Arsenida (GaAs) atau Galium Arsenida Phospida (GaAsP) atau juga Galium Phospida (GaP), bahan-bahan ini memancarkan cahaya dengan warna yang berbeda-beda. Bahan GaAs memancarkan cahaya infra-merah, Bahan GaAsP memancarkan cahaya merah atau kuning, sedangkan bahan GaP memancarkan cahaya merah atau hijau.
Seperti halnya piranti elektronik lainnya , LED mempunyai nilai besaran terbatas dimana tegangan majunya dibedakan atas jenis warna 
TABEL LED DAN TEGANGANYA
Warna
Tegangan Maju
 Merah
1.8 volt
Orange
2.0 volt
Kuning
2.1 volt
Hijau
2.2 volt
Gambar 3. dioda LED
Sedangkan besar arus maju suatu LED standard adalah sekitar 20 mA. Karena dapat mengeluarkan cahaya, maka pengujian LED ini mudah, cukup dengan menggabungkan dengan sumber tegangan dc kecil saja atau dengan ohmmeter dengan polaritas yang sesuai dengan elektrodanya.

LED konvensional terbuat dari mineral inorganik yang bervariasi sehingga menghasilkan warna sebagai berikut:

* Aluminium Gallium Arsenide (AlGaAs) – merah dan inframerah
* Gallium Aluminium Phosphide – hijau
* Gallium Arsenide/Phosphide (GaAsP) – merah, oranye-merah, oranye, dan kuning
* Gallium Nitride (GaN) – hijau, hijau murni (atau hijau emerald), dan biru
* Gallium Phosphide (GaP) – merah, kuning, dan hijau
* Zinc Selenide (ZnSe) – biru
* Indium Gallium Nitride (InGaN) – hijau kebiruan dan biru
* Indium Gallium Aluminium Phosphide – oranye-merah, oranye, kuning, dan hijau
* Silicon Carbide (SiC) – biru
* Diamond (C) – ultraviolet
* Silicon (Si) – biru (dalam pengembangan)
* Sapphire (Al2O3) – biru
LED biru dan putih
LED biru pertama kali dan bisa dikomersialkan menggunakan substrat galium nitrida. LED ini ditemukan oleh Shuji Nakamura tahun 1993 sewaktu berkarir di Nichia Corporation di Jepang.
LED ini kemudian populer di penghujung tahun 90-an. LED biru ini dapat dikombinasikan ke LED merah dan hijau yang telah ada sebelumnya untuk menciptakan cahaya putih.
4. DIODA CAHAYA ( PHOTO-DIODE)
Dioda cahaya ini bekerja pada daerah reverse, jadi hanya arus bocor saja yang melewatinya. Dalam keadaan gelap, arus yang mengalir sekitar 10 A untuk dioda cahaya dengan bahan dasar germanium dan 1A untuk bahan silikon. Kuat cahaya dan temperature keliling dapat menaikkan arus bocor tersebut karena dapat mengubah nilai resistansinya dimana semakin kuat cahaya yang menyinari semakin kecil nilai resistansi dioda cahaya tersebut. Penggunaan dioda cahaya diantaranya adalah sebagai sensor dalam pembacaan pita data berlubang (Punch Tape), dimana pita berlubang tersebut terletak diantara sumber cahaya dan dioda cahaya. Jika setiap lubang pita itu melewati antara tadi, maka cahaya yang memasuki lubang tersebut akan diterima oleh dioda cahaya dan diubah dalam bentuk signal listrik. Sedangkan penggunaan lainnya adalah dalam alat pengukur kuat cahaya (Lux-Meter), dimana dalam keadaan gelap resistansi dioda cahaya ini tinggi sedangkan jika disinari cahaya akan berubah rendah. Selain itu banyak juga dioda cahaya ini digunakan sebagai sensor sistem pengaman (security) misal dalam penggunaan alarm.
Gambar 4. dioda foto.
5. DIODA VARACTOR
Dioda Varactor disebut juga sebagai dioda kapasitas yang sifatnya mempunyai kapasitas yang berubah-ubah jika diberikan tegangan. Dioda ini bekerja didaerah reverse mirip dioda Zener. Bahan dasar pembuatan dioda varactor ini adalah silikon dimana dioda ini sifat kapasitansinya tergantung pada tegangan yang diberikan padanya. Jika tegangan tegangannya semakin naik, kapasitasnya akan turun. Dioda varikap banyak digunakan pada pesawat penerima radio dan televisi di bagian pengaturan suara (Audio). 
Gambar 5. dioda varactor
6. DIODA SCHOTTKY (SCR)
            DIODA SCR singkatan dari Silicon Control Rectifier. Adalah Dioda yang mempunyai fungsi sebagai pengendali. SCR atau Tyristor masih termasuk keluarga semikonduktor dengan karateristik yang serupa dengan tabung thiratron. Sebagai pengendalinya adalah gate(G).SCR sering disebut Therystor. SCR sebetulnya dari bahan campuran P dan N. Isi SCR terdiri dari PNPN (Positif Negatif Positif Negatif) dan biasanya disebut PNPN Trioda.
Gambar 6. dioda schottky.
Pada gambar diatas terlihat SCR dengan anoda pada kaki yang berulir, Gerbang gate pada kaki yang pendek, sedangkan katoda pada kaki yang panjang.

Jenis-jenis Kapasitor, Simbol dan Fungsi dari Kapasitor

Simbol dan Fungsi Kapasitor beserta Jenis-jenisnya
Simbol dan Fungsi Kapasitor beserta jenis-jenisnya – Kapasitor (Capacitor) atau disebut juga dengan Kondensator (Condensator) adalah Komponen Elektronika Pasif yang dapat menyimpan muatan listrik dalam waktu sementara dengan satuan kapasitansinya adalah Farad. Satuan Kapasitor tersebut diambil dari nama penemunya yaitu Michael Faraday (1791 ~ 1867) yang berasal dari Inggris. Namun Farad adalah satuan yang sangat besar, oleh karena itu pada umumnya Kapasitor yang digunakan dalam peralatan Elektronika adalah satuan Farad yang dikecilkan menjadi pikoFarad, NanoFarad dan MicroFarad.
Konversi Satuan Farad adalah sebagai berikut :
1 Farad = 1.000.000µF (mikro Farad)
1µF = 1.000nF (nano Farad)
1µF = 1.000.000pF (piko Farad)
1nF = 1.000pF (piko Farad)
Kapasitor merupakan Komponen Elektronika yang terdiri dari 2 pelat konduktor yang pada umumnya adalah terbuat dari logam dan sebuah Isolator diantaranya sebagai pemisah. Dalam Rangkaian Elektronika, Kapasitor disingkat dengan huruf “C”.

Jenis-Jenis Kapasitor

Berdasarkan bahan Isolator dan nilainya, Kapasitor dapat dibagi menjadi 2 Jenis yaitu Kapasitor Nilai Tetap dan Kapasitor Variabel. Berikut ini adalah penjelasan singkatnya untuk masing-masing jenis Kapasitor :

A. KAPASITOR NILAI TETAP (FIXED CAPACITOR)

Kapasitor Nilai Tetap atau Fixed Capacitor adalah Kapasitor yang nilainya konstan atau tidak berubah-ubah. Berikut ini adalah Jenis-jenis Kapasitor yang nilainya Tetap :
Kapasitor Nilai Tetap

1. Kapasitor Keramik (Ceramic Capasitor)

Kapasitor Keramik adalah Kapasitor yang Isolatornya terbuat dari Keramik dan berbentuk bulat tipis ataupun persegi empat. Kapasitor Keramik tidak memiliki arah atau polaritas, jadi dapat dipasang bolak-balik dalam rangkaian Elektronika. Pada umumnya, Nilai Kapasitor Keramik berkisar antara 1pf sampai 0.01µF.
Kapasitor yang berbentuk Chip (Chip Capasitor) umumnya terbuat dari bahan Keramik yang dikemas sangat kecil untuk memenuhi kebutuhan peralatan Elektronik yang dirancang makin kecil dan dapat dipasang oleh Mesin Produksi SMT (Surface Mount Technology) yang berkecepatan tinggi.

2. Kapasitor Polyester (Polyester Capacitor)

Kapasitor Polyester adalah kapasitor yang isolatornya terbuat dari Polyester dengan bentuk persegi empat. Kapasitor Polyester dapat dipasang terbalik dalam rangkaian Elektronika (tidak memiliki polaritas arah)

3. Kapasitor Kertas (Paper Capacitor)

Kapasitor Kertas adalah kapasitor yang isolatornya terbuat dari Kertas dan pada umumnya nilai kapasitor kertas berkisar diantara 300pf sampai 4µF. Kapasitor Kertas tidak memiliki polaritas arah atau dapat dipasang bolak balik dalam Rangkaian Elektronika.

4. Kapasitor Mika (Mica Capacitor)

Kapasitor Mika adalah kapasitor yang bahan Isolatornya terbuat dari bahan Mika. Nilai Kapasitor Mika pada umumnya berkisar antara 50pF sampai 0.02µF. Kapasitor Mika juga dapat dipasang bolak balik karena tidak memiliki polaritas arah.

5. Kapasitor Elektrolit (Electrolyte Capacitor)

Kapasitor Elektrolit adalah kapasitor yang bahan Isolatornya terbuat dari Elektrolit (Electrolyte) dan berbentuk Tabung / Silinder. Kapasitor Elektrolit atau disingkat dengan ELCO ini sering dipakai pada Rangkaian Elektronika yang memerlukan Kapasintasi (Capacitance) yang tinggi. Kapasitor Elektrolit yang memiliki Polaritas arah Positif (-) dan Negatif (-) ini menggunakan bahan Aluminium sebagai pembungkus dan sekaligus sebagai terminal Negatif-nya. Pada umumnya nilai Kapasitor Elektrolit berkisar dari 0.47µF hingga ribuan microfarad (µF). Biasanya di badan Kapasitor Elektrolit (ELCO) akan tertera Nilai Kapasitansi, Tegangan (Voltage), dan Terminal Negatif-nya. Hal yang perlu diperhatikan, Kapasitor Elektrolit dapat meledak jika polaritas (arah) pemasangannya terbalik dan melampui batas kamampuan tegangannya.

6. Kapasitor Tantalum

Kapasitor Tantalum juga memiliki Polaritas arah Positif (+) dan Negatif (-) seperti halnya Kapasitor Elektrolit dan bahan Isolatornya juga berasal dari Elektrolit. Disebut dengan Kapasitor Tantalum karena Kapasitor jenis ini memakai bahan Logam Tantalum sebagai Terminal Anodanya (+). Kapasitor Tantalum dapat beroperasi pada suhu yang lebih tinggi dibanding dengan tipe Kapasitor Elektrolit lainnya dan juga memiliki kapasintansi yang besar tetapi dapat dikemas dalam ukuran yang lebih kecil dan mungil. Oleh karena itu, Kapasitor Tantalum merupakan jenis Kapasitor yang berharga mahal. Pada umumnya dipakai pada peralatan Elektronika yang berukuran kecil seperti di Handphone dan Laptop.

B. KAPASITOR VARIABEL (VARIABLE CAPACITOR)

Kapasitor Variabel adalah Kapasitor yang nilai Kapasitansinya dapat diatur atau berubah-ubah. Secara fisik, Kapasitor Variabel ini terdiri dari 2 jenis yaitu :
Kapasitor Variabel (Variable Capasitor)

1. VARCO (Variable Condensator)

VARCO (Variable Condensator) yang terbuat dari Logam dengan ukuran yang lebih besar dan pada umumnya digunakan untuk memilih Gelombang Frekuensi pada Rangkaian Radio (digabungkan dengan Spul Antena dan Spul Osilator). Nilai Kapasitansi VARCO berkisar antara 100pF sampai 500pF

2. Trimmer

Trimmer adalah jenis Kapasitor Variabel yang memiliki bentuk lebih kecil sehingga memerlukan alat seperti Obeng untuk dapat memutar Poros pengaturnya. Trimmer terdiri dari 2 pelat logam yang dipisahkan oleh selembar Mika dan juga terdapat sebuah Screw yang mengatur jarak kedua pelat logam tersebut sehingga nilai kapasitansinya menjadi berubah. Trimmer dalam Rangkaian Elektronika berfungsi untuk menepatkan pemilihan gelombang Frekuensi (Fine Tune). Nilai Kapasitansi Trimmer hanya maksimal sampai 100pF.

Fungsi Kapasitor dalam Rangkaian Elektronika

Pada Peralatan Elektronika, Kapasitor merupakan salah satu jenis Komponen Elektronika yang paling sering digunakan. Hal ini dikarenakan Kapasitor memiliki banyak fungsi sehingga hampir setiap Rangkaian Elektronika memerlukannya.
Dibawah ini adalah beberapa fungsi daripada Kapasitor dalam Rangkaian Elektronika :
  • Sebagai Penyimpan arus atau tegangan listrik
  • Sebagai Konduktor yang dapat melewatkan arus AC (Alternating Current)
  • Sebagai Isolator yang menghambat arus DC (Direct Current)
  • Sebagai Filter dalam Rangkaian Power Supply (Catu Daya)
  • Sebagai Kopling
  • Sebagai Pembangkit Frekuensi dalam Rangkaian Osilator
  • Sebagai Penggeser Fasa
  • Sebagai Pemilih Gelombang Frekuensi (Kapasitor Variabel yang digabungkan dengan Spul Antena dan Osilator)
Untuk mengetahui Cara Membaca nilai Kapasitor dan juga cara mengukur / menguji Kapasitor, silakan membacanya di artikel : Cara Membaca dan menghitung Nilai Kode Kapasitor dan Cara Mengukur Kapasitor (Kondensator).

Sabtu, 05 Maret 2016

Cara Menghitung Nilai Resistor

Cara Membaca Nilai Resistor – Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
Kita juga bisa mengetahui nilai suatu Resistor dengan cara menggunakan alat pengukur Ohm Meter atau MultiMeter. Satuan nilai Resistor adalah Ohm (Ω).

Cara menghitung nilai Resistor berdasarkan Kode Warna

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :



Perhitungan untuk Resistor dengan 4 Gelang warna :

Cara menghitung nilai resistor 4 gelang
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

Perhitungan untuk Resistor dengan 5 Gelang warna :

Cara Menghitung Nilai Resistor 5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

Cara menghitung nilai Resistor berdasarkan Kode Angka :

Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Resistor Chip
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Cara pembacaannya adalah :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)

Pengertian Resistor, Jenis dan Fungsi Resistor

Pengertian Resistor, Jenis dan Fungsi Resistor

Pengertian Resistor






Resistor adalah
 komponen dasar  elektronika  yang umumnya digunakan pada rangkaian elektronika  ataupun rangkaian listrik lainnya dengan fungsi utama yaitu menghambat/membatasi jumlah arus input atau arus yang mengalir masuk ke dalam satu rangkaian, dimana kemampuan resistor dalam membatasi arus masuk sesuai dengan spesifikasi resistor tersebut. Sesuai  dengan  namanya  resistor  bersifat  resistif  dan umumnya  terbuat  dari  bahan  karbon.

 

Dari  hukum  Ohms  diketahui,  resistansi  berbanding  terbalik dengan jumlah  arus  yang  mengalir  melaluinya.  Satuan  untuk resistansi  pada  resistor  disebut  Ohm dengan simbol  Ω (Omega).

Umumnya berbagai jenis pada resistor  dibuat  dari  bahan  dan sifat atau karakteristik yang berbeda., disamping itu spesifikasi  lain yang perlu diperhatikan  ketika memilih sebuah resistor pada suatu rancangan adalah besaran watt-nya.

Karena resistor bekerja dengan konsep dialiri arus listrik,  maka  akan  terjadi suatu kondisi yang disebut  disipasi  daya yaitu berupa  panas  sebesar  W=I2R.

Semakin besar fisik  atau ukuran dari suatu  resistor,  maka hal ini akan berbanding lurus dengan  semakin besar kemampuan disipasi daya resistor  tersebut.

Resistor yang ada dipasaran tersedia dengan ukuran 1/8, 1/4, 1, 2, 5, 10 dan 20 watt, dimana resistor  yang memiliki disipasi daya dari 5, 10 hingga 20 watt.
Tetapi umumnya untuk  jenis resistor  yang berukuran lebih besar (jumbo) nilai  resistansi  dicetak  langsung dibadannya sehingga dapat terlihat, misalnya 100Ω  5W. Resistor umumnya memiliki bentuk kubik  memanjang  persegi  empat  yang memiliki warna dasar putih,  meskipun juga terdapat bentuk lain seperti silinder.

Simbol Resistor


Simbol Skematis resistor terbagi dua versi, yaitu versi US dan Versi Eropa, meskipun terdapat perbedaan simbol resistor tapi kalian bebas untuk memilih. Meskipun bebas untuk memilih simbol resistor yang ingin digunakan, tapi perlu di ingat kalian tidak boleh mencampur atau menggunakan dua simbol tersebut dalam satu rangkaian.

Berikut perbedaan simbolnya

Bahan Resistansi Pada Resistor


Resistor dapat dibuat dari sejumlah bahan yang berbeda, perbedaan bahan resistansi pada resistor akan menentukan kualitas dari resistor tersebut.

Berikut ini beberapa bahan yang paling umum digunakan dalam pembuatan resistor

1. Komposisi Karbon


Memiliki daya rendah hingga menengah, toleransi dan satbilitas yang dihasilkan dari resistor komposis karbon relatif buruk, disamping itu juga menghasilkan lebih banyak noise dibanding tipe resistor lainnya.

2. Film Karbon


Memiliki daya rendah, toleransi serta stabilitas yang dihasilkan lumayan bagus, serta tidak menghasilkan banyak noise.

3. Film Metal


Memiliki daya rendah hingga menengah, toleransi serta stabilitas yang dihasilkan dari ressitor jenis ini sangat baik, disamping itu hampir tidak ada noise yang dihasilkan.

 

4. Gulungan Kawat


Memiliki daya tinggi hingga sangat tinggi, toleransi yang dihasilkan sangat baik serta stabilitas yang juga baik, disamping itu hampir tidak ada noise yang dihasilkan.


Jenis - Jenis Resistor


Berdasarkan  jenis  dan  bahan  yang  digunakan  untuk  membuat  resistor  dibedakan  menjadi resistor  kawat,  resistor  arang  dan  resistor  oksida  logam.

Sedangkan  resistor  arang  dan  resistor oksida logam berdasarkan susunan  yang dikenal  resistor komposisi dan resistor film.



Namun demikian, secara umum jenis - jenis resistor yang ada dipasaran lebih dikenal sebagai resistor tetap (fixed resistor) dan resistor variabel (variabel resistor).


1. Jenis Resistor Tetap ( Fixed Resistor)


Resistor tetap merupakan jenis resistor yang nilainya sudah tertulis pada badan resistor dengan menggunakan kode warna ataupun angka. Resistor ini banyak digunakan sebagai penghambat arus listrik secara permanen.


Untuk jenis resistor tetap, salah satu cirinya yang dapat kalian ingat adalah nilai dari resistansinya yang tidak dapat berubah karena dalam proses pembuatannya telah ditentukan nilai tetap dari resistor tersebut.

Jenis-Jenis Resistor Tetap (Fixed Resistor)

A. Resistor Komposisi Karbon (Carbon Composition Resistor)

Adapun jenis resistor komposisi  karbon dibuat dari campuran karbon atau  grafit dengan bahan isolasi yang berfungsi untuk membungkusnya. 

Resistor komposisi karbon merupakan resistor tipe rendah dikarenakan memiliki induktansi yang rendah sehingga sangat ideal dipergunakan dalam frekuensi tinggi.

Tetapi umumnya resistor jenis ini cukup menganggu karena menimbulkan noise dan kurang stabil ketika panas, namum resistor komposisi karbon merupakan jenis resistor yang tergolong murah dipasaran dan umumnya dipergunakan dalam suatu rangkaian listrik. 


Resistor komposisi  umumnya diberi awalan "CR" pada penulisannya, contoh CR10k Ω dan tersedia dalam kemasan E6 ( ± 20% toleransi), E12 ( ± 10% toleransi) dan E24 ( ± 5% toleransi) dengan daya 0.125 atau 1/4 Watt sampai 5 Watt. Karena memiliki nilai toleransi yang cukup besar sehingga kurang presisi (akurat) dalam penggunaanya.

B.  Resistor Film

Berdasarkan bahan pembuatannya jenis resistor film terbagi 3 yaitu resistor film metal, resistor film karbon, resistor film oxide. Jenis resistor film umumnya dibuat dengan memasukkan logam murni, seperti nikel atau sebuah film oxide seperti tin-oxide yang dimasukkan kedalam keramik batang.

·         Resistor Film Karbon

Jenis Resistor Jenis Carbon Film ini terdiri dari filem tipis karbon yang diendapkan atau dibungkus isolator yang dipotong berbentuk spiral. Nilai resistansinya tergantung pada proporsi antara karbon dan isolator.
Pada prinsipnya semakin besar campuran bahan karbonnya yang terdapat pada resistor maka semakin kecil  nilai resistansi yang didapatkan.

Nilai resistansi resistor film karbon yang umumnya terdapat di pasaran berkisar diantara 1 Ω hingga 10M Ω dengan nilai daya berkisar 1/6 W sampai 5 W.

Karena rendahnya kepekaan terhadap suhu, resistor film karbon dapat bekerja dengan baik di suhu yang berkisar antara -55°C hingga 155°C.

·         Resistor Film Metal

Jenis Resistor jenis film metal memiliki kestabilan suhu yang lebih baik dibanding film karbon, tidak mudah noise serta memiliki frekuensi yang lebih baik atau diaplikasikan dalam frekuensi radio.

Metal Film Resistor adalah jenis Resistor yang dilapisi dengan Film logam yang tipis ke Subtrat Keramik dan dipotong berbentuk spiral.

Nilai Resistansinya dipengaruhi oleh panjang, lebar  dan ketebalan spiral logam. Adapun resistor film oxide memilki kualitas yang lebih baik dibandingkan resistor film metal.


Resistor film metal umumnya ditulis dengan awalan "MFR" contohnya MFR100k Ω dan "CF" untuk resistor film karbon. 

Resistor film metal tersedia dalam beberapa tipe kemasan seperti E24 (±5% dan ±2% toleransi), E96 (±1% toleransi) and E192 (±0.5%, ±0.25% & ±0.1% toleransi) dengan daya  0.05 (1/20th) Watt sampai 1/2 Watt.

C. Resistor Kawat (Wirewound Resistor)


Satu lagi tipe jenis resistor tetap yaitu resistor kawat, jenis resistor ini dibuat dengan cara melilitkan kawat kedalam keramik lalu membungkusnya dengan bahan isolator.

Bentuk fisik dari resistor ini cukup bervariasi dan memiliki ukuran yang relatif besar.


Karena jenis resistor kawat umumnya memiliki besaran resistansi yang tergolong tinggi dan tahan terhadap temperatur tinggi, resistor ini hanya digunakan pada rangkaian power.

Resistor kawat umumnya ditulis dengan awalan "WH" atau "W" contohnya (WH10 Ω) dan tersedia dalam kemasan WH aluminium  (±1%, ±2%, ±5% & ±10% toleransi) atau W yang ditutupi enamel (seperti kaca) memiliki  (±1%, ±2% & ±5% toleransi) dengan daya dari 1W to 300W atau lebih.

2. Jenis Resistor Variabel


Adapun tipe resistor variabel atau disebut juga resistor tidak tetap merupakan jenis resistor yang nilai resistansi tahananya dapat berubah dan diatur sesuai dengan yang diinginan. Adapun untuk jenis resistor variabel dibago menjadi 3 yaitu Potensiometer, Rheostat dan Trimpot.



A. Potensiometer



Potensiometer merupakan jenis variable resistor yang paling sering digunakan. Potensiometer merupakan jenis Variable Resistor yang nilai resistansinya dapat berubah-ubah dengan cara memutar porosnya melalui sebuah Tuas yang terdapat pada kepala Potensiometer.

Nilai Resistansi Potensiometer biasanya tertulis di badan Potensiometer dalam bentuk kode angka.

Pada umumnya, perubahan resistansi pada potensiometer terbagi menjadi 2, yakni linier dan logaritmik. Yang dimaksud dengan perubahan secara linier adalah perubahan nilai resistansinya berbanding lurus dengan arah putaran pengaturnya.

Sedangkan, yang dimaksud dengan perubahan secara logaritmik adalah perubahan nilai resistansinya yang didasarkan pada perhitungan logaritmik.

Untuk membedakan potensiometer linier dan logaritmik cukup melihat kode huruf yang mana huruf A menandakan potensiometer linier sedangkan huruf B menandakan potensiometer logaritmik.

B. Rheostat



Rheostat merupakan jenis jenis Variable Resistor yang dapat beroperasi pada Tegangan dan Arus yang tinggi. Rheostat terbuat dari lilitan kawat resistif dan pengaturan Nilai Resistansi dilakukan dengan penyapu yang bergerak pada bagian atas Toroid.

C. Preset Resistor (Trimpot)





Preset Resistor atau sering juga disebut dengan Trimpot (Trimmer Potensiometer) adalah jenis Variable Resistor yang berfungsi seperti Potensiometer tetapi memiliki ukuran yang lebih kecil dan tidak memiliki Tuas.

Untuk mengatur nilai resistansinya, dibutuhkan alat bantu seperti Obeng kecil untuk dapat memutar porosnya.

Sifat dan fisik trimpot sebenarnya sama dengan potensiometer yag membedakan ukuran trimpot jauh lebih kecil. Perubahan nilai resistansinya juga dibagi menjadi 2, yakni linier dan logaritmik yang mana huruf A trimpot linier dan huruf B trimpot logaritmik.

C. Thermistor (Thermal Resistor)

Thermistor adalah jenis resistor yang nilai resistansinya dapat berubah karena dipengaruhi oleh suhu (Temperature). Thermistor merupakan Singkatan dari “Thermal Resistor”.

Terdapat dua jenis Thermistor yaitu Thermistor NTC (Negative Temperature Coefficient) dan Thermistor PTC (Positive Temperature Coefficient).

Bentuk dan Simbol Thermistor :



D. LDR (Light Dependent Resistor)


LDR atau Light Dependent Resistor adalah jenis Resistor yang nilai Resistansinya dapat berubah karena dipengaruhi oleh intensitas Cahaya yang diterimanya.

Bentuk dan Simbol jenis LDR :  



Fungsi Resistor


Berikut ini beberapa fungsi resistor pada rangkaian elektronik

1. Resistor mengatur nilai tegangan yang sesuai di atasnya karena jatuh tegangan IR
2. Resistor memainkan peran penting dalam membatasi jumlah arus pada sirkuit elektronik
3. Resistor memberikan tegangan bias yang sesuai ke perangkat aktif.

4. Resistor mengatur arus di setiap sirkuit elektronik.

5. Resistor berfungsi sebagai beban di mana outputnya sebagai arus input

6. Resistor memberikan stabilisasi bias ketika dikombinasi dengan kapasitor

7. Resistor dapat memberikan umpan balik (feedback) pada berbagai sirkuit elektronik.



Cara Mengukur Resistor


Cara Mengukur resistor ada tiga yaitu

·         Membaca Kode Warna Resistor

·         Membaca Resistor SMD

·         Menggunakan Multimeter Analog/Digital

Berikut ini akan kami jelas cara mengukur resistor berdasarkan tiga cara diatas

Membaca Kode Warna Resistor




Cara membaca kode warna resistor ditemukan pada tahun 1920-an, nilai resistansi serta toleransi pada resistor ditampilkan berdasarakan deretan pita berwarna yang dilukis pada badan resistor.

Sebagian besar resistor yang kamu lihat akan memiliki empat pita berwarna . Begini cara mereka membacanya :

1.      Dua pita pertama menentukan nilai dari resistansi.

2.      Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.

3.      Dan terakhir, pita keempat menentukan nilai toleransi.




Untuk lebih jelasnya kamu bisa baca artikel dibawah ini yang membahas secara lengkap bagaimana cara membaca kode warna resistor 

Membaca Kode Resistor SMD



Tidak setiap resistor cukup besar untuk dibaca atau diukur hanya dengan menggunakan dengan kode warna, dari keterbatasan inilah maka digunakan kode SMD (Surface Mount Devices). Untuk mengkompensasi ruang yang lebih kecil, resistor SMD diberi kode berbasis numerik yang tertulis jelas di badan resistor.

Jika kamu perhatikan papan sirkuit modern saat ini, terlihat bahwa resistor SMD hampir semuanya berukuran sama. Hal ini berguna untuk membantu menstandarisasi proses pembuatan dengan mesin pick-and-place, perhatikan gambar dibawah menjelaskan bagaimana perhitungan resistor SMD


Mengukur Resistor Menggunkan Multimeter Analog/Digital


Menggunakan Multimeter Analog

1. Pastikan Alat multimeter analog sudah dikalibrasi terlebih dahulu

2. Perhatikan perkiraan nilai hambatan resistor yang akan diukur berdasarkan kode warnanya, apakah 1 ohm, 5 ohm, atau 22K Ohm

3. Putarlah selektor pada multimeter dengan posisi sebagai berikut, R (Ω) x1, R (Ω) x10, atau R (Ω) x1K hal ini tergantung dari perkiraan nilai hambatan resistor yang akan diukur. Sebagai contoh,  Apabila kita ingin mengukur resistor yang mana perkiraan nilai hambatan resistor yaitu 100 ohm, maka putar selektor pada R (Ω) x1 atau R (Ω) x10.

4. Selanjutnya hubungkan probe multimeter pada masing-masing ujung resistor


5. Apabila probe telah dihubungkan ke masing-masing ujung resistor, maka jarum multimeter akan mulai bergerak mengukur nilai hambatan resistor. Apabila jarum multimeter tidak bergerak maka kemungkinan besar resistor mengalami kerusakan

Menggunakan Multimeter Digital

Mengukur resistor menggunakan multimeter jauh lebih simpel dibanding analog, dimana hasil dari pengukuran langsung ditampilkan dalam bentuk angka/digit. Langkah-langkahnya sama saja seperti menggunaka multimeter analog